A RAD A radioaktív sugárzások d már az egyes atommag rendelkező részecskék id detektálási módszert med	IOAKTÍV SUGÁRZÁS D etektálása az egyik legérze gok bomlása is kimutath onizálnak! Számos detekt:	PETEKTÁLÁSA ékenyebb detektálási módszer, mert ató. Közvetlenül csak a töltéssel álási módszer ismert. A megfelelő
 a sugárzás típusa a radioaktív minta jellege 		
 a szükséges detektálási é 	erzékenység.	
A detektálás alapja: a suga anyagának kölcsönhatása	árzás és a detektor	
A kölcsönhatás lehet: •ionizáció		
•gerjesztés		A GENJEZ I ES
Dr. Pátzay György	Radiokémia-IV	1

Az α-részecskék kölcsönhatása az anyaggal

A kölcsönhatásban résztvevő	A bekövetkezett változás		
anyagrész	sugárzásban	anyagban	
Héjelektron	fékeződés, abszorpció	gerjesztés, ionizáció, kémiai változás	
Az atommag erőtere	szóródás, fékeződés, abszorpció		
Az atommag	magreakció	új atommag, kémiai változás	

Pl. 5 MeV-os α -részecske hatótávolsága levegőben 3,7 cm, ~40000 töltéspár/cm, szilárd anyagban ~1-2 mikrométer.

Szóródás: ha az α -részecske a mag közelébe jut, nehéz atommagok esetén eléri a 2%- Dr. Patzay György, α -részecske magreakciót is kivalthat.

A béta-részecskék kölcsönhatása az anyaggal

A kölcsönhatásban	A bekövetke	zett változás	
résztvevő anyagi rész	a sugárzásban	az anyagban	
Héjelektronok	fékeződés, szóródás, abszorpció	gerjesztés, ionizáció, kémiai változás	
Az atommag erőtere	fékeződés, szóródás, abszorpció		
Atommag	Nem lépnek kölcsönhatásba		

A röntgen és γ-sugárzás kölcsönhatása a detektor anyagával

A kölczönbatás a γ-sugárzás energiájától függnia-IV

		Rendszámfüggés	Energiafüggés	
	Fotoeffektus	∝ Z ⁴ Z ⁵	∝ E ^{-3.5} E ⁻¹	
	Comptoneffektus	Σ ∞	∝ E ⁻¹	
	Párképzés	αZ ²	∞ In E (Eγ>1.02 MeV)	
Dr. Pátzay G	yörgy	Radiokémia-IV		- 1

1. Az ionizációs számláló tartománya

Az alkalmazott feszültség kicsi (100-300V).Ezen a feszültségen csak az ionizáló sugárzás hatására keletkezett ionpárok (elektronok és pozitív ionok) érik el az elektródákat. Az alfa-sugárzás fajlagos ionizációja magasabb, mint a béta- és gamma-sugárzásé, ezért több töltést produkál. Töltőgáz: levegő (argon)

Alkalmaznak integrális és impulzus üzemű ionizációs kamrák.

Integrális kamra:

•Áramot mérünk, mely α -sugárzás esetén elérheti a μ A áramerősséget. Mérése galvanométerrel, 10⁻⁸ a esetén elektrométerrel vagy nagy ellenálláson eső feszültség mérésével történik.

Impulzus kamra:

•Feszültségimpulzusokat mérünk.

2. A proporcionális számláló tartománya

Az alkalmazott feszültség magasabb (300-3000V). Ezen a feszültségen a megfelelő töltésű elektród felé gyorsulva repülő ionok ütközve más semleges gázatomokkal vagy molekulákkal másodlagos ionizóció révén újabb töltéspárokat hoznak létre. A gázerősítés 10-1000-szeres. Töltőgáz: nemesgáz +10% szeves gőz. A keletkezett összes töltés száma arányos a primer töltések számával, így egy alfa- részecske nagyobb töltésszámot generál, mint a béta-, illetve gamma-"részecskék". Nehéz részek detektálására alkalmas, mert azok teljesen lefékeződnek a detektor térfogatban.

Pl. BF₃ termikus neutronok hatására a következő magreakcióban α -sugárzást generál, mely jelet generál.

Dr. Pátzay György

Radiokémia-IV

FOLYADÉKSZCINTILLÁCIÓ Alapja, hogy policiklusos vegyületek α , β , vagy ektron sokszorozó dron sokszorozó neutron sugárzás hatására fényt bocsátanak ki. küvetta cristálv A lágy (kisenergiájú) β-sugárzás (¹⁴C, ³H) koincidencia detektálható, ha egy a szcintillációs vegyületet áramköi tartalmazó oldatban a sugárforrás is oldottan van jelen (kicsi adszorpció, 4π geometriájú mérés). Számos folyadék alkalmas poláris és apoláris minták oldására. Az átlátszó folyadékot amplitúdó analizátor nagyméretű fotoelektron sokszorozókkal körbevéve a fényjelek elektromos jelekké alakíthatók és így 90-100%-os számlálási A számláló B számláló C számláló hatásfok érhető el. Kisaktivitású minták is mérhetők, pl. biológiai anyagokban szén- és hidrogén-tartalmú vegyületek mennyisége. A 14C idő számláló PC és a ³H különböző energiájú fényfotonokat gerjeszt, így bizonyos megkülönböztetés is adat kiíratás megvalósítható. Kioltás jelensége → a színes vegyületek elnyelik a fény egy részét. Dr. Pátzay György Radiokémia-IV 39

Egyes kémiai analitikai módszerek érzékenysége					
ANALÍZIS	DETEKTÁLÁSI KÜSZÖB	MEGJEGYZÉS			
IR Spektroszkópia	10 ¹⁵ molekula	roncsolásmentes			
UV Spektroszkópia	10 ¹⁵ molekula	roncsolásmentes			
Atomadszorpció	10 ¹³ atom	roncsolásos			
Láng emissziós anal.	10 ¹³ atoms	roncsolásos			
Gázkromatográfia	10 ¹³ atoms	roncsolásos			
Radioizotópos		roncsolásmentes			
¹⁴ C	10 ¹¹ atom	(5770 yr felezési idő)			
зН	10 ⁹ atom	(12.26 yr felezési idő)			
³² P	6 x 10 ⁶ atom	(14.3 yr felezési idő)			
Leggyakrabban β-sugárzó nuklidokat alkalmaznak a folyadékszcintillációs mérésekben: ³ H (0.018 MeV), ¹⁴ C (0.156 MeV), ³⁵ S (0.168 MeV), ⁴⁵ Ca (0.250 MeV), ³² P (1.710 MeV), ¹³¹ I (0.610 MeV). Az oldószerhez fluoreszkáló anyagot adnak, mely eltolja a gerjesztéskor keletkezett fény hullámhosszát a magasabb hullámhosszak felé. Oldószer: dioxán, toluol, p-xylol szcintilláló anyag: PPO, dimetil - popopbutil PBO, PBBO					
Dr. Pátzay György	Radiokémia-IV	44			

Egyéb detektorok

•Filmdetektorok: dozimetriai méréseknél és autoradiográfiás méréseknél alkalmazzák. •Buborékkamra detektor: hasonló a ködkamrához csak folyadékkal töltik, a sugárzás buborék nyomvonalakt hoz létre.

•Szikrakamra: gáztöltésű detektor töltött lemezekkel, ionizáció esetén szikra keletkezik.

Detektorok	összehasonlítása
------------	------------------

Típus	Detektál	% hatásfok	Felbontás	Háttér (cpm)	Relatív költség
lonizációs kamra	α, β	30-100	n/a	Alacsony	-
Proporcionális kamra	α, β	20-50	Kicsi	0-100	-
GM-cső	β	<1-30	n/a	10-100	-
	γ	<1	n/a	10-20	-
Nal(TI)	γ	10-30	200 eV	100-600	+
Ge(Li)/HPGE	γ	Max.10	2 eV	10-100	++
Folyadék szcintilláció	β	50-100	Változó	10-30	+/-

Dr. Pátzay György

sorszám	beütésszám, N(i)	szórás, s(i)	w(i)=1/(s(i)*s(i))	w(i)N(l)	Az eredményekből jól látható, hogy a
1	107	10.34	0.009345794	1.00	egyes beütésszám mérések szórás
2	109	10.44	0.009174312	1.00	(hibája) ingadozik a súlvozatlan é
3	94	9.70	0.010638298	1.00	
4	117	10.82	0.008547009	1.00	sulyozott szamtani atlagok ertek
5	117	10.82	0.008547009	1.00	közeli érték.
6	112	10.58	0.008928571	1.00	Ugyanakkor az egyes mérése
7	111	10.54	0.009009009	1.00	szórása az átlaghoz kónost
8	126	11.22	0.007936508	1.00	szorasa az allagnoz kepesi
9	117	10.82	0.008547009	1.00	súlyozott esetben a súlyozatlan ese
10	93	9.64	0.010752688	1.00	szórásának mintegy 50%-a!
11	82	9.06	0.012195122	1.00	
12	115	10.72	0.008695652	1.00	
13	110	10.49	0.009090909	1.00	
14	99	9.95	0.01010101	1.00	
15	98	9.90	0.010204082	1.00	
16	113	10.63	0.008849558	1.00	
17	95	9.75	0.010526316	1.00	
18	107	10.34	0.009345794	1.00	
19	98	9.90	0.010204082	1.00	
20	92	9.59	0.010869565	1.00	
Összegek					
20	2112	205.245817	0.191508296	20	
áblag Đái	704 (1050 av		súlvozott	10404341	kómia IV
szórás=	11.15		szórás=	5 221706	

Példa: Mi a a valószínűsége annak, hogy egy napon a kórházban naponta születő 12 gyermekből 10 leány lesz?

$$P(10;0.5,12) = 0.5^{10} \cdot (1-0.5)^{12-10} \cdot \frac{12!}{10!(12-10)!}$$
$$= 0.016 \text{ yagy } 1.6\%$$

Normális (Gauss) eoszlás

X esemény bekövetkezésének valószínűsége egy μ *átlaggal és* σ standard deviációval jellemezhető normális eloszlásban::

$$P(x;\mu,\sigma) = \frac{1}{\sigma\sqrt{2\pi}}e^{-(x-\mu)^2/2\sigma^2}$$

Dr. Pátzay György

Radiokémia-IV

Poisson eloszlás

A Poisson eloszlásban egy véletlenszerűen bekövetkező r esemény időbeli gyakoriságát határozzuk meg, akkor ha a bekövetkezés várható gyakorisága λ

$$P(r;\lambda) = \frac{e^{-\lambda}\lambda^r}{r!}$$

Villámlás gyakorisága Balesetek bekövetkezése Telefonhívás gyakorisága

At eloszlás varianciája és szórása

$$V_{(r)} = \lambda$$
$$\sigma = \sqrt{\lambda}$$

Nagyon hasznos eloszlás típus, mert varianciája a várható értékkel, standard deviációja a várható érték négyzetgyökével arányos. A radioaktív beütésszámok eloszlását Poisson eloszlással jellemezhetjük, ahol az átlagérték szórása, az 75 atlagérték négyzetgyöke!

eloszlása egyezik a sokaság eloszlásával l D. Palzav Gyorgy

> Sokkal alattomosabbak a szisztematikus hibák, melyek általában egy irányban tolják el mérés eredményét. Például az energia, vagy hatásfok szerint rosszul kalibrált sokcsatornás analizátorral végzett mérés hibás, eltolt eredményt ad a minőségi elemzésre és a mennyiségi elemzésre is. A szisztematikus hibák kimutatása és kiküszöbölése kalibrálással végezhető el. >A jól beállított mérőkészülékeknél véletlenszerű, statisztikus hibák léphetnek fel. Ezek számos egymástól független folyamatok kismértékű ingadozásából származnak és az eredő hatásuk jelentkezik. Például az elektronikai egységek (tápfeszültség, erősítő, diszkriminátor, számláló stb.) tulajdonságainak ingadozása statisztikus ingadozást okoz. A radioaktív bomlás időbeni ingadozása a binomiális eloszlással, közelítőleg az ún. Poisson eloszlással, illetve nagyobb számú jel (>25) esetén normális, vagy Gauss-féle eloszlással írható le. Ehhez az ingadozáshoz adódnak hozzá a mérő berendezés elektronikájának ingadozásai Radiokémia-IV 79

Dr. Pátzay György

A radioaktív bomlás ingadozása az ún. binomiális eloszlással írható le. Ha az események (bomlások) valószínűsége kicsi (p<<1) akkor a Poisson eloszlással jól le lehet írni. Ha az események (bomlások) száma nagy (>20), akkor a Poisson eloszlás a normális Gauss féle eloszlással közelíthető

A nukleáris méréstechnikában figyelembe kell venni a vizsgált jelenség (bomlás) statisztikus jellegét, mely Poisson eloszlással jellemezhető. A számlálási hibák számos forrásból származnak:

Bomlási statisztikai	Háttéringadozás	Detektor felbontás
Számláló felbontás	Számlálási hatásfok	Abszorpció/Önabszorpció
Geometria	Feloldási idő	Visszaszórás

Háttér

Ugyancsak ingadozik az időben, ezért külön célszerű mérni és az átlagértékét levonni a mért (bruttó) beütésszámból.

$$N_{netto} = N_{brutto} - N_{hatter}$$

 $\sigma_{mert} = \pm \sqrt{\sigma_{brutto}^2 + \sigma_{hatter}^2}$

Ha a háttér átlaga kisebb mint a mért bruttó beütésszám átlagának 1%-a, a háttér levonása elhanyagolható! A háttér beütésszám mérés hibája csökkenthető: hosszabb háttérmérési idő választásával, nagyobb aktivitású minta mérésével, diszkriminátor alkalmazásával.

Dr. Pátzay György

Radiokémia-IV

83

Felbontási hibák: Az erősen radioaktív mintákból kilépő nagyszámú részecskét a berendezés nem képes mind megszámolni. A GM-cső feloldási ideje ~ 200 μs, a Nal(TI) detektoré ~ 2 µs beütésenként. Az egyszerű számlálók maximum 106 cpm számlálási sebességet bírnak el, az analizátorok lassabbak. Detektor felbontási hibák: A legtöbb mérésnél elégséges, ha relatív aktivitásokat határozunk meg, így a hatásfok nem probléma. Hatásfok meghatározás szükséges az abszolút aktivitás meghatározásához. A detektor hatásfok időben és az energia függvényében változhat, ezért rendszeresen ellenőrizni kell. Ezt legegyszerűbben lehetőleg a mért radionukliddal és a mérési geometriával megegyező, kalibrált, ismert aktivitású standarddal végezhetjük el. DETEKTOR HATÁSFOKOK DETEKTOR SUGÁRZÁS % HATÁSFOK % hatásfok = <u>mért – beütésszám</u> 10-50 2PI-PRORCIONÁLIS D. α, β GM β <1-30 várt – bomlások – száma <1 γ 10-30 Nal(TI) γ 50-100 FOLYADÉK SZCINTIL. β <u><</u>10 Ge(Li) γokémia-IV 84

Detektor hatásfok

A detektor hatásfoka a megszámlált impulzusok száma a minta aktivitás százalékában.

$$\det ektorhat \acute{a}fok = \varepsilon = \frac{cpm}{dpm} = \frac{cps}{dps}$$

A detektor hatásfokot befolyásolja:

 A bomlás során emittált sugárzás detektorba jutó hányada (térszög, abszorpció. Szórás stb.)

A detektorba bejutó sugárzás jelet generáló hányada

Példa: Egy 12500 dpm aktivitású sugárforrás a detektorban 2840 cpm beütésszámot generált. Mekkora a detektor hatásfoka:

ε=2840/12500=0,2272 azaz 22,72%

Feloldási idő (holtidő) τ

A detektor számlálási sebessége a detektor holtidejétől és a mérőberendezés holtidejéből származik. A holtidő alatt beérkező újabb részecskét a detektor és/vagy számláló nem képes érzékelni. A GM csövek holtideje 100-300µs, a szcintillációs detektoroké 10-20µs, a standard számlálók 100000-300000cps beütésszámot mérnek elfogadható veszteséggel. Nagyobb aktivitás, belépő részecske fluxus esetén a holtidő az intenzitás négyzetével arányosan nő. A holdidők összege a feloldási idő. Ha jelentős a számlálási veszteség korrigálni szükséges a mért intenzitást a holdidős veszteséggel. Dr. Pátzay György Radiokémia-IV 85

$$s = \pm \sqrt{\bar{N}} \approx \sqrt{N}$$
$$s = \pm \sqrt{\frac{\sum_{i} \left(N_{i} - \bar{N}\right)^{2}}{n - 1}}$$

Az első szórás érték csak a radioaktív bomlás statisztikus hibáját (Poisson eloszlás) veszi figyelembe, míg a második eloszlástól független, és tartalmazza a bomlás statisztikus hibáját+a mérő berendezés hibáit is. Ha a kétféle módon számított szórás egyezik, ez azt jelenti, hogy a mérőkészülékünk hibája elhanyagolható, azaz jó a berendezésünk.

Relatív hiba: ha csak a bomlási ingadozással számolunk

$$V(\%) = \pm \frac{\sqrt{\bar{N}}}{\bar{N}} \cdot 100 = \pm \frac{1}{\sqrt{\bar{N}}} \cdot 100$$

Így 10000 cpm esetén V(%)= 1%

Ha m db n mérésből álló mérést végzünk a mérésátlagok is szórnak. Ekkor az átlagok szórása:

$$s_{\bar{x}} = \pm \frac{\sqrt{\sum_{i=1,n} (N_i - \bar{N})^2}}{m(n-1)}$$

Dr. Pátzay György

Radiokémia-IV

93

Ha m db sorozatot mérünk és az n-szer megismételt t mérési idő alatt mért impulzusok (N_i) átlagát kiszámítjuk:

$$\bar{N} = \sum_{i=1,n}^{-} N_i \qquad \bar{I} = \frac{\bar{N}}{t} \qquad \mathbf{s}_{\mathrm{I}} = \pm \frac{\sqrt{\bar{N}}}{t} = \pm \sqrt{\frac{\bar{N}}{t^2}} = \pm \sqrt{\frac{\bar{I}}{t}} \qquad \mathbf{s}_{\bar{I}} = \pm \sqrt{\frac{\bar{I}}{t \cdot m}}$$

Ha a hátteret $t_{\rm h}$ ideig mérjük és N_{\rm h} impulzust, a mintát t ideig mérjük és N impulzust mérünk, akkor a nettó beütésszám hibája::

$$s_{I} = \pm \sqrt{\frac{N_{bruttó}}{t_{bruttó}^{2}} + \frac{N_{háttér}}{t_{háttér}^{2}}} = \pm \sqrt{\frac{I_{bruutó}}{t_{bruttó}} + \frac{I_{háttér}}{t_{háttér}}}$$

A háttértől még eltérő szignifikáns beütésszám:

$$N_{\min} = \overline{N} - N_h \ge \overline{3}\sqrt{N_h}$$

Mérési hiba lehetséges csökkentése

1) Ha a minta és a háttér mérésére rendelkezésre álló idő adott, ezt a mérésekre rendelkezésre álló idő a minta és a háttérmérés között az alábbiak szerint kell megosztani:

$$rac{t_{h \acute{a}tt\acute{e}r}}{t_{brutt\acute{o}}} = \sqrt{rac{I_{h \acute{a}tt\acute{e}r}}{I_{brutt\acute{o}}}}$$
Dr. Pátzay György

Radiokémia-IV

Adott statisztikai hibához rendelhető mérési idő meghatározása

Tételezzük föl, hogy a radioaktív minta nettó beütésszámát adott k%-os relatív szórással kívánjuk mérni. Ismert háttér mért intenzitás és szórás esetén és elvégeztünk egy próba buttó beütésszám N_{próba} mérést t_{próba} ideig. Például a megkívánt relatív szórás 1%, a háttér mért intenzitás 100 2 cpm, valamint a bruttó próbamérésnél 2 perc alatt 800 beütést kaptunk? Így próbaként mért bruttó intenzitás I_{bruttó}=400 cpm. A felhasználható összefüggés a megkívánt mérési időre:

$$t_{brattó}(k\%) = \frac{I_{brattó}}{(I_{brattó} - I_{háttér})^2 (k/100)^2 - s_{háttér}^2} = \frac{400}{(400 - 100)^2 (0,01)^2 - 2_{háttér}^2} = 80 \text{ perc}$$

Így 80 percig mérve a 400cpm mért intenzitású forrást a relatív szórás tényleg 1% lesz:

$$s = \pm \sqrt{\frac{I_{brando}}{t_{brando}} + \frac{I_{bdner}}{t_{bdner}}} = \pm \sqrt{\frac{400}{80}} + 2^2 = \pm 3$$
$$V(\%) = \frac{s}{I_{nendo}} \cdot 100 = \frac{3}{400 - 100} \cdot 100 = 1\%$$
Radiokémia-IV

Dr. Pátzay György

Hibás mérési adatok kizárása $CR = \frac{(x_{gyanus} - x)}{\sqrt{x}}$ Chauvenet kritérium Lényege, hogy a gyanús kiszóró adat és a mintaátlag különbségét hasonlítjuk az egyes minta szórásához. Ha ez az arány nagyobb, mint a táblázatosan megadott határérték az adatot kizárhatjuk. Adatok száma Határ érték Adatok száma Határ érték 15 2.13 2 1.15 19 2.22 3 1.38 20 2.24 1.54 4 25 2.33 5 1.68 2.39 30 6 1.73 35 2.45 7 1.79 2.50 40 8 1.86 50 2.58 9 1.92 75 2.71 10 1.96 100 2.80 Dr. Pátzay György Radiokémia-I 97 2.03

Példa: Az alábbi táblázatban lévő 25 mért beütésszám közül a legmagasabb (32) és a legalacsonyabb adat (11) gyanús. Ki kell-e azokat zárni?

Sorszám	Bruttó beütés	Sorszám	Bruttó beütés	Sorszám	Bruttó beütés
1	15	11	19	21	18
2	24	12	20	21	10
3	20	13	29	22	19
4	17	14	22	23	14
5	26	15	18	24	30
6	19	16	28	25	24
7	11	10	20		
8	13	17	23		
9	22	10	20		
10	17	19	32		
1. lépé	s –a mintaátlag 21	, a szórás r s² = 28	neghatározása	:	
2. lépé	s - CR számítá	sa	$CR_{32} = \frac{(32 - 21)}{\sqrt{21}} = 2$	2,4	
)r. Pátzay Gy	örgy	(Radioké	$CR_{11} = \frac{(21-11)}{\sqrt{21}} = 2$,2	98

A számlálási sebességet átszámíthatjuk a minta aktivitás értékévé, ha ismerjük a detektor számlálási hatásokát (ε), a minta előkészítés során kinyert radioaktivitás arányát (P), a sugárzás önabszorpciójának arányát (Ad) és a mérés során fellépő visszaszórás arányát (B):

$$A = \frac{\sqrt{\frac{I}{I}_{bruttó}}}{\varepsilon \cdot P \cdot Ad \cdot B} + \frac{\overline{I}_{háttér}}{T_{háttér}}$$

Példa

Egy 32%-os hatásfokú detektorral 200 percig mérjük egy radioaktív minta beütésszámát, mely 3050 beütés. Mérünk egy 200 perces hátteret is, az itt mért számlálási sebesség 10 cpm. A nettó számlálási sebesség és a szórása:

$$I = \frac{3050}{200} - 10 = 5,25 cpm$$

$$s = +/-\sqrt{\frac{3050/200}{200} + \frac{10}{200}} = +/-0,36 cpm$$

A minta számított aktivitás pedig:

$$A = \frac{5,25 \pm 0,36 \text{ cmp}}{0,32 \text{ beütés/bomlás}} = 16,4 \pm 1,1 \text{ dpm} = 0,27 \pm 0,02 \text{ Bq} = 7,4 \pm 0,5 \text{ pCi}$$

Dr. Pátzay György

Radiokémia-IV

Számlálási statisztika– példa					
Minta	konfid	encia Int	ervallum hiba	becslés	
		68% k.i.	95% k.i.	99% k.i.	
Measure Counts,	N \sqrt{N}	\sqrt{N}/N	1.96 \sqrt{N}/N	7 2.58 \sqrt{N}/N	
	20 4.5	0.224	0.438	0.577	
ţ	50 7.1	0.141	0.277	0.365	
1(00 10.0	0.100	0.196	0.258	
20	00 14.1	0.071	0.139	0.182	
1,00	00 31.6	0.032	0.062	0.082	
5,00	00 70.7	0.014	0.028	0.036	
10,00	00 100.	0 0.010	0.020	0.026	
40,00	200.	0 0.005	0.010	0.013	
70,00 Dr. Pátzay Gy	00 264. _{yörgy}	6 0.004 Radiok	0.007 émia-IV	0.010 104	

Számlálás kisaktivitások esetén A mérési gyakorlatban gyakran előfordul, hogy a mért beütések (N) száma, illetve a mért intenzitás (N/t) eléggé kicsiny és átlaguk közel esik a háttér átlagához(Nh, Nh/t) . Felmerül a kérdés mikor és mekkora hibával mondhatjuk, hogy a mérések átlaga eltér a háttér átlagától jelentősen és nem háttér, hanem valós jel? Ennek eldöntésére két jellemzőt használhatunk, a detektálási szintet (decision level, detection level) DL=Lc értékét, vagy a kimutatási határt(detection level, Lower Limit of detection) LLD=Lp értékét. Mindkettő megadható beütésszámként (N), mért intenzitásként (I=N/t), illetve aktivitásként (A) is. L_C értéke a mért adatot minősíti, míg L_D értéke a mérőberendezést. L, alkalmazása Mért beütésszám, intenzitás minősítéséhez alkalmazzuk. Ha a háttérrel korrigált nettó beütésszám értéke 95%-os megbízhatósággal kisebb, mint L_c értéke, 5%-os hiba mellett megállapíthatuk, hogy hátteret mértünk és nincs jelen valódi sugárforrás. N_{nettó}<L_c a mért beütésszám háttér Nnettó>Lc a mért beütésszám valós jel L_D alkalmazása Bár a mérőkészülék által még éppen detektálható érték meghatározására szolgál (kimutatási határ), de viszonyítható egy mért értékhez is, Nnetto <LD a mért beütés már jelként nem mutatható ki N_{nettó}>L_D a mért beütésszám detektálható valós jel

Dr. Pátzay György

Radiokémia-IV

L_c. L_D, MDA, MDC

Ha a háttérmérés átlagához közeleső, nullánál nagyobb beütésszámokat mérünk, felmerül a kérdés, ha nincs valódi radioaktív sugárforrás jelen és a mért beütésszámot hibásan jelnek vesszük (elsőfajú hiba), illetve ha valódi radioaktív sugárforrás van jelen és a mért beütésszámot hibásan háttérként értékeljük (másodfajú hiba), hogyan tudjuk ezen hibák előfordulási valószínűségét csökkenteni? Az első esetben az L_c kritikus detektálási szint (mért intenzitás!), a második esetben L_D minimálisan kimutatható (szignifikáns) aktivitási szint (mért intenzitás!), paraméterek használhatók fel. Ha a két hiba előfordulási valószínűsége azonos és a háttér értéke nem ismert, L_C, és L_D értéke számítható:

$$L_{C} = k \cdot \sigma_{háttér}$$
$$L_{D} = k^{2} + 2k \cdot \sigma_{háttér}$$

Ha 5% az elsőfajú és 5% a másodfajú hiba elkövetési valószínűsége, azaz 95%-os a megbízhatóság (konfidencia), akkor a normális eloszlás szerint k=1,645 és L_c , valamint L_d értéke:

$$\begin{split} L_{C} &= 1,645 \cdot \sqrt{\frac{I_{hinter}}{t_{hinter}} + \frac{I_{hinter}}{t_{branto}}} \\ L_{D} &= 2,71 + 3,29 \cdot \sqrt{\frac{I_{hinter}}{t_{hinter}} + \frac{I_{hinter}}{t_{branto}}} \end{split}$$

k- az első és másodfajú hiba valószínűségeihez tartozó szigma száma Dr. P(#%)/905%)/sesetén 1,645 Radiokémia-IV

Az L_D értéke az előzetesen becsült minimális szignifikáns aktivitás értéke, melyet a készülék 100 esetben 95-ször nettó beütésszámként detektál és 5%-ban hibásan háttérnek tekint. Ez a készülék detektálási lehetősége. Az L_D 95%-os megbízhatósága mellett a kritikus detektálási határ, L_C valószínűsége 5%, azaz 100 mérésből 5 esetben a sugárforrás hiányában mért értéket jelnek veszi. L_C értékét közvetlen mérések esetén kell alkalmazni. Bármilyen mért jel e fölött jelnek tekinthető.

Ha a minta bruttó beütésszám és a háttér beütésszám mérési ideje egyezik, azaz $t_{háttér} = t_{prutto} = t$, akkor a kifejezések egyszerűsödnek:

$$L_{c} = 2,32 \cdot \sqrt{\frac{I_{hdinkr}}{t}}$$
(1,645*2^{0,5}=2,32)
$$L_{D} = 2,71 + 4,65 \cdot \sqrt{\frac{I_{hdinkr}}{t}}$$
(3,29*2^{0,5}=4,65)

A kritikus detektálási küszöb (L_c) értékét sugárszint mérésnél alkalmazzuk, ha mért érték ennél nagyobb, akkor a minta radioaktív 95%-os megbízhatósággal.

A minimális szignifikáns aktivitási szint, vagy detektálási küszöb (LLD-Lower Limit of Detection), vagy minimálisan detektálható aktivitás (MDA-Minimum Detectable Activity) értékét a minta mérése előtt, a priori határozzuk meg. Általában kibocsátási határok méréséhez szükséges minimális mérési idő meghatározásához használják.

Dr. Pátzay György

Radiokémia-IV

L_D= LLD értékéhez két 95%-os konfidenciaszint kapcsolódik:

- 1. 5% kockázata annak, hogy sugárforrás hiányában is nettó beütésszámot kapjunk
- 5% kockázata annak, hogy az LLD értékével azonos beütésszámot hibásan háttérnek tekintjük

Tehát az LLD két 95%-os konfidenciaszintet kapcsol össze!!!

Példa: Hátteret mértek 50 percig és 16 beütést kaptak. Számítsa ki 0,5 perces mintamérési idő esetére a kritikus detektálási határt (L_c) és a minimális szignifikáns aktivitás szintet (L_p) cpm-ben.

 $L_c = 1.645 \sqrt{\frac{0.32}{50} + \frac{0.32}{0.5}}$ $L_c = 1.645 \sqrt{0.0064 + 0.64}$ $L_c = 1.645 \sqrt{0.6464}$ $L_c = 1.32 \text{ cpm}$ $L_D = 2.71 + 3.29 \sqrt{\frac{0.32}{50} + \frac{0.32}{0.5}}$ $L_D = 2.71 + 3.29 (0.804)$ Regiokégyia-ji

113

L_D minimálisan detektálható szignifikáns aktivitási szint mért intenzitásban (cps,cpm) adja meg a kritikus értéket. Ennek ismeretében a minimálisan detektálható szignifikáns aktivitás (MDA, Bq-ben) is számítható a detektálási hatásfok (ε), a minta előkészítés során kinyert radioaktivitás aránya (P), a sugárzás önabszorpciójának aránya (Ad) és a mérés során fellépő visszaszórás aránya (B) ismeretében. Általában P, Ad és B paraméterek értéke 1 és az aktivitás számításához csak a detektálási hatásfok szükséges. MDA számítható így különböző háttér és mintamérési idők esetén:

$$MDA(Bq) = \frac{2,71+3,29 \cdot \sqrt{\frac{I_{háthér}}{t_{háthér}} + \frac{I_{háthér}}{t_{bruthó}}}}{\varepsilon}$$

Ha a két mérési idő egyezik, azaz $t_{háttér}=t_{bruttó}=t$. akkor:

$$MDA(Bq) = \frac{2,71+4,65 \cdot \sqrt{\frac{I_{hditter}}{t}}}{\varepsilon \cdot t}$$

MDA ismeretében számítható a minimális detektálható koncentráció (MDC) értéke is, ha MDA értékét elosztjuk a minta tömegével, vagy térfogatával.

Dr. Pátzay György

Dr. Pátzay György

Radiokémia-IV

További információ (nem kötelező)

A detektálási küszöbértékeket a háttér számlálási sebességével fejezhetjük ki. A minimális detektálható aktivitás értékét (minimum detectable activity-MDA) a minta beütésszám mérési idejével azonos ideig mért háttér beütésszám szórásának háromszoros értékével fejezzük ki. Az MDA értéknél magasabb mért beütésszám 99,9%-os konfidencia szinten állapítja meg, hogy ez a beütésszám valóságos radioaktivitást fejez ki.

$$MDA = \gamma \cdot 3 \cdot s_{h\dot{a}th\dot{e}r} = \gamma \cdot 3 \sqrt{\frac{N_{h\dot{a}th\dot{e}r}}{T_{h\dot{a}th\dot{e}r}^2}} = \gamma \cdot 3 \sqrt{\frac{I_{h\dot{a}th\dot{e}r}}{T_{h\dot{a}th\dot{e}r}}} = \lambda \cdot 3 \sqrt{\frac{I_{h\dot{a}th\dot{e}r}}{T_{h\dot{a}th\dot{e}r}}}$$
ahol⁷ korrekciós tényező ($\gamma = \frac{1}{(\varepsilon \cdot P \cdot Ad \cdot B)}$)

A detektálási küszöb pontosabban definiálható, melyben figyelembe veszik annak a kockázatnak a valószínűségét, hogy jelet detektálunk amikor nincs jel (elsőfajú hiba) és annak a kockázatnak a valószínűségét is, hogy nem detektálunk jelet, amikor pedig van jel másodfajú hiba).

Definiálták a minimálisan szignifikáns aktivitást (minimum sugnificant activity, MSA) és a minimálisan detektálható valódi aktivitást (minimum detectable true activity, MDTA). Az első jellemző az olyan mérésre vonatkozik, melyben nullánál nagyobb aktivitás értéket tudunk mérni, a második pedig arra a valódi aktivitás minimumra vonatkozik, melyet még adott konfidencia szinten detektálni tudunk. Két lehetséges mérési helyzet lehetséges: az első esetben a háttér beütésszám értékét előzetesen pontosan ismerjük, a második esetben ennek pontos értéke előre nem ismert. A legtöbb mérő berendezésre az első eset alkalmazható. Az első esetre definiálható MSA és MDTA értéke, mint: Dr. Pátzay György 117

$$MSA = \gamma \cdot K \cdot \sqrt{\frac{I_{hainér}}{T_{hainér}}} \quad \text{és} \quad MDTA = \gamma \cdot \sqrt{\frac{I_{hainér}}{T_{hainér}}} [K_A + K_b \cdot \sqrt{1 + \frac{K_A}{\sqrt{I_{hainér}} \cdot T_{hainér}} + \frac{K_B^2}{4I_{hainér} \cdot T_{hainér}}} + \frac{K_A^2}{2\sqrt{I_{hainér} \cdot T_{hainér}}}]$$

$$ha \quad \frac{K_A + K_B}{\sqrt{I_{hainér} \cdot T_{hainér}}} \prec 1 \text{ akkor} \quad \text{MDTA} \cong \gamma \cdot (K_A + K_B) \sqrt{\frac{I_{hainér}}{T_{hainér}}}$$

ahol K_A értéke az elsőfajú hiba elkövetésének valószínűségétől, K_B értéke pedig a másodfajú hiba elkövetésének valószínűségétől függő érték, melyeket normális valószínűségi eloszlás esetére a következő táblázatban mutatunk be.

Annak a valószínűsége, hogy elkerüljük az elsőfajú és/vagy másodfajú hibát (%)	K_A és/vagy K_B értéke
99.9	3.00
99.0	2.33
97.5	1.96
95.0	1.64
90.0	1.28

Ha a hibás aktivitás mérés elkerülésének valószínűsége 99,9%, akkor K_A=3 és MSA értéke megegyezik MDA értékével. Dr. Pátzay György Radiokémia-IV 118

	A Summary of	f Units and a	mantities for radio	activity and	dose of radiation.	
			1			
	Quantity		SI unit	Cgs unit	Conversion factors	
Activity		А	Bq	Ci, dps	1 Bq = 1 dps; 1 Ci = 3.7x10 ¹⁰ Bq	
Exposure dose		X	C/kg	R	1 C kg ⁻¹ = 3876 R	
Absorbed dose		D	Gy (!/ _{kg})	rad	1 Gy = 100 rad = 6.24e15 eV/g	
Equivalent dose <i>Q D</i>		Н	Sv (Q*Gy)	rem	1 Sv = 100 rem	
Abbreviations Tabata, 1991).	: Bq, becquerel; Ci, 1 Gy = 10 1 Sy = 10	curie; C, coulon 0 rad	nb; R, roentgen; Gy, gray	v; Sv, sievert; c Modifi 3.7×10 ¹⁰	lps disintegration per secon ers of the unit curie (Ci = Bq)	d (After
	1 SV = 100 1 Sv = 0 v	1 Gy		MCi KCi	Megacurie 10 ⁶ Ci Kilocurie 10 ³ Ci	10 ⁶ Ci 10 ³ Ci 0.001 Ci 37,000 Ba