

Environmentally benign and catalytic processes Solvents

Béla Simándi, Edit Székely BME Kémiai és Környezeti Folyamatmérnöki Tanszék simandi@mail.bme.hu

Scope of presentation

- Solvents in medicinal products, active substances and excipients
- Solvents in food regulations
- Case studies

What is a solvent?

- A solvent is a substance (or mixture) used to dilute or dissolve another substance to create a solution.
- Water is the most common solvent.
- Most solvents used in industry are organic, petroleumbased chemicals.
- There are hundreds of industrial solvents, and they are used in many industries (e.g. pharmaceutical, food, chemical manufacturing, plastics, cleaning, painting, printing etc.)

Solvents are used in a variety of applications

- Liquid medium for reactions to take place,
- Formation of second phase by separation processes (absorption, adsorption, extraction, crystallization)
- Analytical methodologies
- Favourable physico-chemical properties in transfer and mixing
- Favourable heat transfer properties

Solvents in medicinal products

- Food and Drug Administration FDA (USA)
- European Medicines Agency EMEA (EU)

Classification of residual solvents by risk assessment

Title: ICH Topic Q 3 C (R4)
 Impurities: Residual solvents

Reference: CPMP/ICH/283/95

Abbreviations :

ICH: International Conference on Harmonization

CPMP: Committee for Propriatory Medicinal Products

Class 1.: solvents that should be avoided

Solvent r	Concentration limit (ppm)	Concern
Benzene	2	Carcinogen
Carbon tetrachloride	4	Toxic and environmental hazard
1,2-Dichloroethane	5	Toxic
1,1-Dichloroethene	8	Toxic
1,1,1-Trichloroethane	1500	Environmental hazard

Class 2.: solvents to be limited

Solvent	Exposure limit (PDE*) (mg/day)	Concentration limit (ppm)
*	PDE=permitted daily exposur	e
Acetonitrile	4,1	410
Chlorobenzene I	3,6	360
Chloroform	0,6	60
Cyclohexane	38,8	3880
1,2-Dichloroethene	18,7	1870
Dichloromethane	6	600
1,2-Dimethoxiethane	1	100
N,N-Dimethylacetamide	10,9	1090
N,N-Dimethylformamide	8,8	880
1,4-Dioxane	3,8	380
2-Ethoxyethanol	1,6	160
Ethylene glycol	6,2	620
Formamide	2,2	220
Hexane	2,9	290

Class 2.: continue

Solvent	Exposure limit (PDE) (mg/day)	Concentration limit (ppm)
		(ppiii)
Methanol	30	3000
2-Metoxyethanol	0,5	50
Methylbuthylketone	0,5	50
Methylcyclohexane	11,8	1180
N-Methylpyrrolidone	48,4	4840
Nitromethane	0,5	50
Pyridine	2	200
Sulfolane	1,6	160
Tetralin	1	100
Toluene	8,9	890
1,1,2-Trichloroethene	0,8	80

^{*} usually 60%yhenelene, 14% p-xylene, 9% o-x@lene with 17% ethyl benene, 2170

Class 3.: solvents with low toxic potential, which should be limited by GMP or other qualitybased requirements

Acetic acid	Isopropyl benzene	Heptane	2-Methyl-1- propanol
Acetone	Dimethylsulfoxide	Isobutyl acetate	Pentane
Anisole	Ethanol	Isopropyl acetate	1-Pentanol
1-Butanol	Ethyl acetate	Methyl acetate	1-Propanol
2-Butanol	Ethyl ether	3-Methyl-1-butanol	2-Propanol
Buthyl acetate	Ethyl formate	Methylethyl ketone	Propyl acetate
Tert-buthylmethyl		Methylisobutyl	
ether	Formic acid	ketone	Tetrahydrofurane

Class 4.: solvents for which no adequate toxicological data was found

1,1-Diethoxypropane	Methylisopropyl ketone		
1,1-Dimethoxymethane	Methyltetrahydrofuran		
2,2-Dimethoxypropane	Petroleum ether		
Isooktane	Trichloroacetic acid		
Izopropyl ether	Trifluoroacetic acid		

Solvents for extraction of foodstuffs and flavourings

- European Comission directive 88/344/EEC
- (Magyar Élelmiszerkönyv 1-2-88/344)

Extraction solvents which are acceptable for all uses when used in compliance with GMP

Gases	Liqids	
Propane	Ethanol ²	
Butane	Ethyl acetate t	
Carbon dioxide	acetone ¹	
Nitrous oxide	water ²	

¹ Acetone cannot be used for refining of olive oil.

² Ethanol and water

Extraction solvents for which conditions of use are specified

Solvent	Conditions of use	Maximum residue limits in the extracted foodstuff or food ingredient
Hexane	Production or fractionation of fats and oils and production of cocoa butter	1 mg/kg in final fat,oil or cocoa butter; 10 mg/kg in the food containing the extracted material; 30 mg/kg in the soya product as sold to the final consumer; 5 mg/kg in the defatted germ
Methyl acetate	Decaffeination of or removal of irritants and bitterings from caffee and tea; Production of sugar from molasses	20 mg/kg in the coffee or tea; 1 mg/kg in the sugar
Ethylmethyl ketone	Fractionation of fats and oils; Decaffeination of or removal of irritants and bitterings from caffee and tea	5 mg/kg in the fat or oil; 20 mg/kg in the coffee or tea
Dichloromothono	Decaffeination of or removal of	2 mg/kg in the roasted caffee;

Extraction solvents used in the preparation flavourings

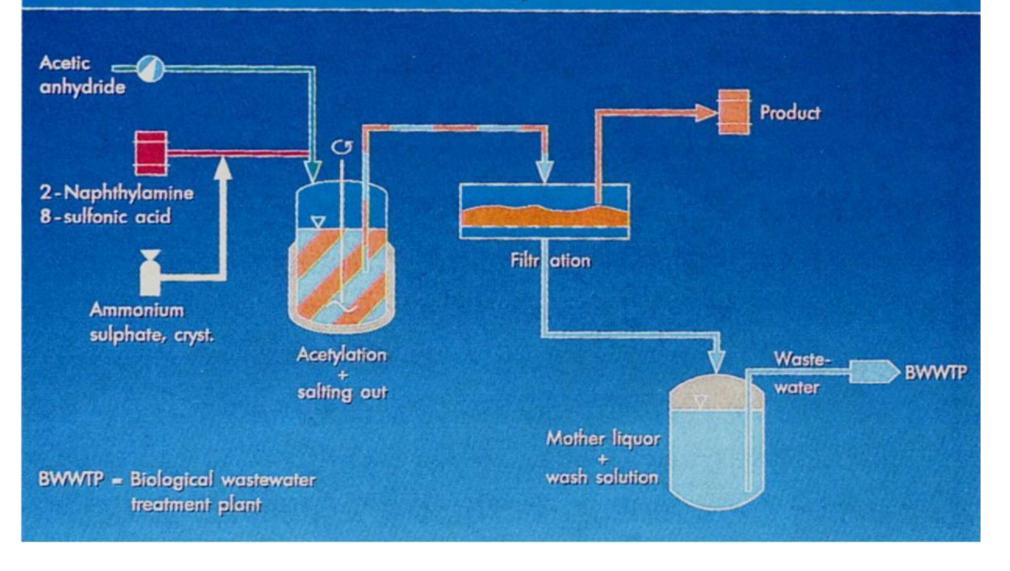
Solvent	Maximum residue limits in the foodstuff due to the use of extraction solvents in the preparation of flavourings		
Diethyl ether	2 mg/kg		
Hexane	1 mg/kg		
Cyclohexane	1 mg/kg		
Methyl acetate	1 mg/kg		
butan-1-ol	1 mg/kg		
butan-2-ol	1 mg/kg		
Ethylmethyl ketone	1 mg/kg		
Dichloromethane	0,02 mg/kg		
propan-1-ol	1 mg/kg		
1,1,1,2-tetrafluoroethane	0,02 mg/kg		

Physico-chemical properties of solvents

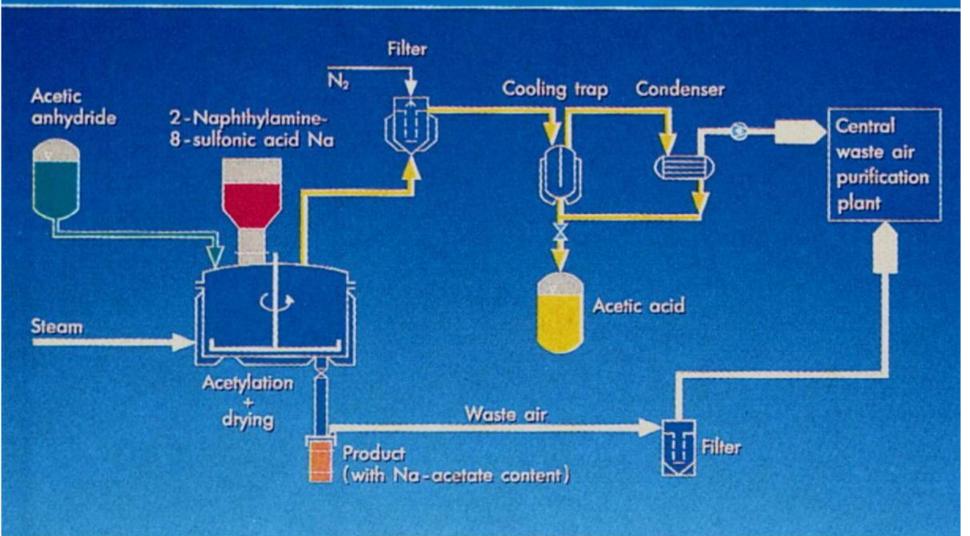
	CITCII	mear pro		OD OI DO	T V CIIUD	
Solvent	hexane	isohexane	¹ Ethyl alcohol	Isopropyl alcohol	Ethyl acetate	acetone
CAS-number	110543	107835	64176	67630	141786	67641
Formula	C ₆ H ₁₄	C ₆ H ₁₄	C ₂ H ₆ O	C ₃ H ₈ O	C ₄ H ₈ O ₂	C ₃ H ₆ O
Molecular weight	86,18	86,18	46,07	60,11	88,11	58,08
Density, kg/m ³	671	653	785	818	902	791
Melting point, °C	-95	-154	-130	-89	-84	-94
Boiling point, °C	68,7	62	78,4	82,4	77	56
Flashpoint, °C	-23	-7	12	12	-3 - 0	-17 – (- 16)
Autoignation, °C	260	264	425	400	460	538
Explosive limits, (V/V)%	1,2 – 7,7	1,2 - 7	3,3 – 19,0	2,5 – 12,0	2,3 – 11,4	2,2 - 13
Heat of vaporization, kJ/kg	334,5	324,1	854,1	667,0	430,8	512,3
Specific heat, kJ/kgK	2,23	2,23	2,55	2,50	2,13	2,14
Solubility in water	no	no Műegye	T SOI. 1 7 8 2	Sol.	Partly	Sol.

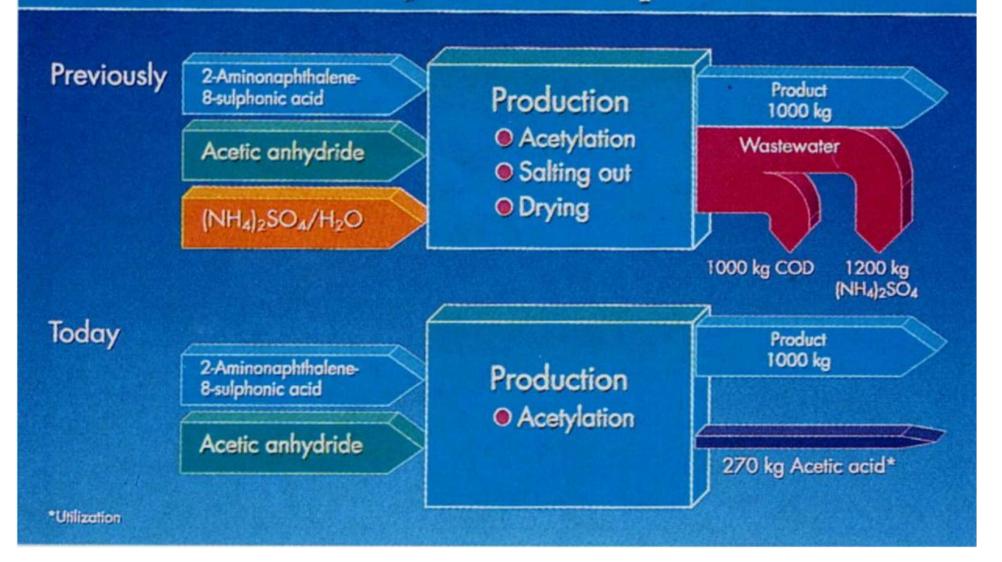
Problems associated with use of solvents

- Health effects of solvents (cancer, nervous system, liver damage, fertility),
- Environmental problems: pollution of air, water and soil; persistent in nature (are not biodegradable).



Case studies


• Christ C. (Hoechst AG): Chem. Tech. Europe, 19-25 (1996)


Manufacture of 2-acetaminonaphthalene-8-sulfonic acid - Wet acetylation -

Manufacture of 2-acetaminonaphthalene-8-sulfonic acid - Dry acetylation -

Manufacture of 2-acetaminonaphthalene-8-sulphonic acid

Reactor with double helix stirrer

Than you for your kind attention!